Effects of Selected Hydrazines on the Early Death Rates of *Enterobacter cloacae*

S. A. London, C. R. Mantel, J. D. Robinson, and S. Luking

Toxic Hazards Division, Air Force Aerospace Medical Research Laboratory, Wright-Patterson AFB, OH 45433

The toxicity of hydrazine and several of its methylated derivatives has been studied in a variety of biological systems. London (1979) utilized a soil bacterium to compare the toxicities of these compounds and to suggest the validity of prokaryote and other simple systems as an adjunct to traditional toxicological techniques. Subsequent efforts (MANTEL and LONDON, 1980) were devoted to elucidating the mechanisms by which the hydrazines exert a toxic effect. The measurements used in these studies were concerned with growth kinetics, i.e., time and concentration parameters describing the growth cycle. The quantitation of growth was accomplished by turbidimetric determinations of cell mass which is an integrative description of particle size and number. This method provided useful information but was not sufficiently sensitive at the extremes of cell culture density. The insensitivity of low cell densities precluded ascertaining the effects of hydrazine exposure immediately after transfer and during the lag phase of the growth cycle.

Since the major indication of intoxication at the test concentrations used [10 ppm hydrazine (Hz); 20 ppm monomethyl-hydrazine (MMH); and 50 ppm 1,1-dimethylhydrazine (UDMH)] was an extension of the lag period, a possible mechanism of action is a random or selective killing of inoculum cells, the lengthening of the lag phase being inversely proportional to the fraction of inoculum cells killed (or prevented from initiating cell division). Since the experiments based on turbidimetric data could not address this aspect, we studied the early death rate kinetics of hydrazine-exposed cultures using a standard viable cell counting procedure as a more reliable quantitative method to enumerate cell death rate at low culture concentrations.

MATERIALS AND METHODS

The organism used in this study - Enterobacter cloacae strain D-31 - and the media, chemicals, and growth conditions were described in a previous report (MANTEL and LONDON, 1980). All experiments were conducted in Bellco 500 ml Nephelo culture flasks containing 100 ml of mineral salts medium (SMS) supplemented (when indicated) with 2 g/L glucose. Serum bottle

stoppers were used in place of screw caps on the side-arm ports to enable sampling with a syringe.

The inocula were obtained from 16 ± 1 hr cultures incubated at 20 ± 1 C on a reciprocating shaker (100 oscill/min). The culture densities were adjusted with SMS to a turbidity of 40% transmittance and the flasks inoculated with 0.1 or 0.2 ml through the rubber serum stoppers. The inocula were not washed since the dilution factors of 500 or 1000 reduced carry-over of any residual nutrients to an insignificant level. In some experiments the '0' time count was obtained immediately after the inoculation of the flask and prior to the addition of the hydrazine compound; in other experiments the '0' time was determined by counting the inoculum culture prior to addition to the Nephelo flasks.

At the indicated times a 0.25 ml aliquot was removed aseptically from the appropriate flask, transferred to a sterile 13 x 100 mm test tube covered with a Morton cap, and vigorously agitated for approximately 20 sec with a Vortex® mixer. The largest total volume of culture removed during any experiment was 3.5 ml (0.25 ml x 14 samples) or 3.5% which did not alter significantly the surface area/volume ratio of medium in the flask. Two separate dilution series were prepared by delivering 0.1 ml volumes with a sterile MLA pipettor (LONDON, 1977) into 9.9 ml Tryptic Soy Broth (Difco) dilution tubes, agitating for 20 sec and diluting further as required. Aliquots of 0.1 ml were dispensed in triplicate with the MLA pipettor on the surface of Plate Count Agar (Difco) and spread with a flamed, alcohol- sterilized glass L-rod. (Tests indicated adherence to the glass rod did not significantly affect counts.) Colonies were counted after 24 hr incubation at 20 ± 1 C with the aid of a Quebec colony counter. Electronic counting devices did not prove satisfactory since at colony densities of approximately 100/plate contiguous colonies could not be discriminated. The counts reported in this study. obtained at different dilutions, are the average of 6 determinations (3 replicates x 2 dilution series) and are all presented as colony forming units (cfu) x 10⁴ or 10⁶/ml for comparison purposes. Five experiments were conducted with variations in sampling time and concentration of hydrazines. When higher concentrations of hydrazines were used, the elevated pH of the medium was adjusted to 7.1 with sterile dilute HCL.

RESULTS AND DISCUSSION

The viable count data for one of the five experiments conducted are presented in Table 1. Two flasks were prepared for each experimental condition and counts obtained from each flask. The data describe the effects of the compounds at the concentrations used in previous studies (10 ppm Hz, 20 ppm MMH, and 50 ppm UDMH) in both a growth (glucose present) and non-growth environment. The variation in the counts at "0" time is due to the inaccuracy of delivering the inoculum with a tuberculin syringe and the tendency for D-31 to form clumps. In addition, the

TABLE 1. The Effect of Hydrazines on the Growth and Viability of D-31 as Determined by Viable Count

اسا	2.45	40	.22	60	.15	.12	.37	.27	30	40	.59	.95	90.	80.
U - G	13.8 2.	0 06	.72 0.	.59 0.	.35 0.	.24 0.	.42 0.	.58 0.	.38 0.	.31 0.	.42 0.	.59 0.	.49 1.	.38 1.
	•													
9 8	2.57													
U + G A B	6.89	0.52	9.0	8.5	47.	767.	1512.	1979.	1269.	1760.	1322.	1788.	1552.	1690.
M - G A B	2.80	0.52	0.15	0.10	0.15	0.34	0.24	0.28	0.88	96.0	0.00	1.32	1.15	1.08
E A	4.34													
B B	2.57	0.32	0.19	0.32	0.99	3.85	5.0	95.0	762.	557.	592.	759.	852.	879.
M + G A B	6.87	0.67	0.50	0.95	1.02	1.15	29.	215.	455.	545.	563.	875.	739.	854.
H - G A B	2.44	0.89	1.20	1.88	1.10	2.02	1.75	1.23	3.30	2.85	3.53	3.49	2.02	1.44
H	2.23	0.87	9.0	2.02	2.37	1.55	2.17	2.77	3.19	2.99	1.84	1.74	1.97	0.80
8	1.50	0.35	0.70	0.97	06.0	1.10	1.15	364.		1000	1885.	2570.	2750.	1990.
H + G	7.03	1.10	1.84	1.95	2.42	2.15	3.30	1030.	,	1347.	1680.	2240.	2600.	2840.
B G	2.35	0.42	0.13	0.13	0.14	0.07	0.10	0.15	0.26	0.29	0.28	0.37	0.49	0.49
C - G A B	4.22	0.57	0.24	0.44	0.25	0.37	0.30	0.50	0.26	0.37	0.30	0.33	0.18	0.52
B B	2.77	٥٠.٥	0.30	1.17	30.	575.	.029	792.	1985.	1545.	1552.	1625.	1970.	1710.
C + G A B	5.68	0.67	1.7	19.4	154.	1017.	1447.	1467.	1819.	1813.	1782.	1872.	1314.	1850.
Time Hr.														

Values are cfu x 106/ml and are averages of six determinations. All flasks were inoculated at the same (sequential) time from one 16 hr culture. A and B refer to duplicate flasks.

C = Control; H = Hydrazine; M = MMH; U = UDMH; +G = SMS with Glucose, -G = SMS without Glucose

TABLE 2. The Effect of Hydrazines on Viable Cell Count of D-31 Cultures

-	10 G	163	179	177	156	164	117	134	126	120	154	123	119	156	
	2	130	172	173	160	159	144	157	144	157	147	166	33	161	
	900	175	231	168	119	<u>8</u>	8	119	82	000	95	82	71	83	
(mdd)	200	145	143	121	90	96	73	8	80	86	78	98	74	71	
) HWO	90	177	186	158	143	121	101	96	80	95	88	78	143	220	
	8	141	127	66	103	80	88	16	86	16	84	9/	98	73	
	506	185	162	134	121	108	103	103	104	117	86	66	;	22	
	20	211	220	174	202	150	116	116	83	106	100	102	117	94	
	900	105	132	130	132	130	125	138	127	112	104	110	121	116	
	100	140	167	176	179	183	162	164	169	172	170	170	159	141	
	506	110	112	109	66	6	108	113	110	109	107	117	122	96	
ppm)	200	193	<u>\$</u>	197	153	160	143	131	126	122	117	137	107	101	
WH (p	206	105	110	901	101	78	16	06	87	85	98	66	103	101	
M	20	99	ı	104	113	108	16	95	94	84	90	90	92	83	
	106	108	107	66	94	96	90	95	74	61	99	62	١	26	
	2	107	118	901	105	6	83	71	64	75	74	63	11	69	
	900	96	108	110	117	104	110	86	89	74	69	51	45	56	
	9	129	150	126	135	133	126	145	124	114	128	120	114	104	
	206	102	108	105	93	101	901	101	104	110	100	101	66	99	
(mdd)	22	126	138	122	124	119	147	126	114	123	127	131	122	107	
Irazine	506	117	121	90	95	94	87	94	88	93	102	66	95	35	
lydra	50	106	105	95	108	105	102	112	109	118	115	117	119	133	
	90						103								
	10 106	66													
		94													
Sontro	1	98													
	4in.													180	
-	Σ											_		_	

Values are cfu x 10⁴/ml and are averages of six determinations. Each column represents an individual experiment performed on a separate day with a new 16 hr inoculum. G indicates glucose-containing medium.

difference in cell concentration at the initiation of the experiment resulted in turn in a difference in the ratio:amount of hydrazine compound/bacterial cell. However, the responses shown are representative of all the experiments conducted and indicate the effects of the hydrazines quite clearly:

- 1. A decrease in viable cell count of approximately the same magnitude occurred in all cultures, including controls, within the first sampling period.
- 2. Replicate cultures responded similarly although absolute numbers differed.
- 3. In the absence of glucose, viable cell counts remained relatively constant after the initial decrease.

Table 2 presents the results of an experiment in which four concentrations of each of the three hydrazine compounds were studied over a time period of three hours. Since previous experiments showed the decreases in viable cell count to occur shortly after transfer, samples were obtained at 5, 15, and 30 min intervals to define more clearly the shape of the "decay" curve. With the exception of a lessened decrease in viable count subsequent to transfer, these data agree in general with the previous four experiments. The values obtained at the shorter time periods indicate the observed decrease in viable count does not occur immediately after transfer but gradually over the first 1 to 2 hours of incubation. Significant cell death did not appear to occur in most cases, except as noted below, even at the highest concentrations of the hydrazines studied. The data for UDMH exposure suggest a dose-response relationship does not occur with this compound as indicated by comparison of the counts obtained at 180 min with the initial "0" time counts. This also applies to the MMH data; however, viability studies over longer time periods (see Tables 3 and 4 and LONDON, 1979) show a doseresponse relationship. The data presented in Tables 3 and 4

Table 3. Viability of D-31 in a Growth Medium in the Presence of a Hydrazine Compound

Concentration	Time to	Reach Maximum	Growth, Days
(ppm)	Hz	MMH	UDMH
	,		
10	2	1	ND
20	3	1	ND
50	10	2	1
100	- after	7 - after 10	0 1
500	ND	ND	1
1000	ND	ND	1

^{- =} No Growth or Viability; ND = Not Determined

were obtained from the cultures established for the experiment summarized in Table 2. The flasks were maintained for up to 20 days after the initial 3 hr observation period and observed or sampled as indicated. Table 3 indicates that D-31, in a growth-promoting medium, initiated growth in the presence of the highest UDMH concentration studied (1000 ppm) to approximately the same extent and in the same time as the control. Growth in the presence of Hz was retarded, the inhibition exhibiting a doseresponse relationship. At 100 ppm the culture was non-viable after 7 days. With 100 ppm MMH, the culture was non-viable in 10 days.

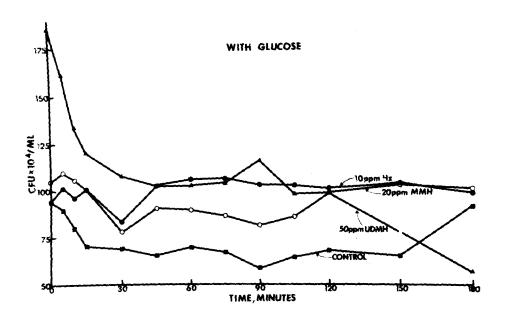
TABLE 4. Viable Count of D-31 in a Non-Growth Medium in the Presence of a Hydrazine Compound

	entration ppm)	_1_	2	4	5	6	7	8	Time 9	in 10	Days 11	12	13	17	18	19	20
	0						TN	TN		TN			TN				TN
Hz	10 20 50 100			173 0		46 43	75 49 1	17	71	25 0	161	500		1 0	1	433	
ММН	10 20 50 100			400 200	TN TN										<u>-</u>		
HMOU	50 100 500 1000	TN TN	TN TN		0	TN 55 0 0	TN O								· · · · · · · · · · · · · · · · · · ·		

TN = Too Numerous to Count Values are cfu/0.1 ml

The data shown in Table 4 attest to both a dose-response and a difference in the toxicity of the three compounds. Thus, the difference in growth and survivability of exposed cells when compared to the control cultures can be observed more readily with increased incubation time.

The reduction in viability of D-31 in the first 60-90 min of exposure is compared in Table 5 for the three hydrazines. These data are a summary of all the experiments performed. Although some variation in procedure occurred and the first observation period was not the same (either 60 or 90 min), the means of these values suggest that 1) UDMH initiated a somewhat increased reduction in viability, 2) Hz exposure presented the smallest reduction in culture viability, and 3) viability may have been greater in a non-growth (no glucose) environment.


Table 5. The Effect of Hydrazines on the Viability of D-31 Inocula in Growth and Non-Growth Environments

Experiment	% Reduction in 1 or 1.5 hr										
Number	C + G	C - G	H + G	H - G	M + G	M - G	U + G	U - G			
_											
1	61	81	19	56	_	-	-	-			
2	40	37	-	-	69	50	84	45			
3A	89	87	85	61	91	80	95	94			
3B	97	83	77	64	88	81	92	84			
4	79	82	57	50	78	66	78	81			
5	39	6	0	0	20	16	37	50			
Average	67.5	62.7	47.6	46.2	69.2	58.6	77.2	70.8			
SD	24.8	33.4	36.9	26.4	28.8	26.9	23.5	21.9			

C = Control; H = Hydrazine; M = MMH; U = UDMH; +G = SMS with Glucose; -G = SMS without Glucose

The viability data for the concentrations of hydrazines studied previously (10 ppm Hz, 20 ppm MMH, and 50 ppm UDMH) are plotted in Fig. 1 for ease of comparison. With the exception of the rapid decrease in cfu in the first 30-45 min in the presence of UDMH, all growth curves were essentially flat, indicating viability of inoculum cells was not affected by any of the compounds. The slope of the curve for the control (unexposed) culture with glucose suggests these cells may have experienced a greater response to "transfer shock" than exposed cells.

The effects of hydrazines on the duration of the lag phase of growth of E. cloacae str D-31 provide a quantitative indication of the response of this organism to low levels of these compounds. Once lag growth is initiated, exposed cultures exhibit growth rates essentially identical to unexposed cells. Previous studies (LONDON and MANTEL, 1983; MANTEL and LONDON, 1980; LONDON, 1979) have shown this response to be both dose and compound related and possibly attributable to rate-controlling phenomena associated with transport mechanisms. The data presented in this report show that the extension of the lag phase is not a manifestation of a reduction in the number of inoculum cells. Although initial decreases in cell count in UDMH exposed cultures were greater than in control cultures, the growth rates, i.e., length of the lag periods, were not affected. By contrast. Hz exposure appeared to decrease the initial cell "die-off" as compared to the control cultures but eventually resulted in a significant delay in the onset of lag growth. With the exception of the early reduction (30-45 min) in UDMH cultures, cell counts remained relatively constant in both growth and non-growth environments (Fig. 1) for the 180 min observation period. reduction data (Table 5) suggest that cultures in minimal medium containing glucose exhibited a slightly larger decline in viable cell count, indicating that cells transferred to a growth promoting environment may be more sensitive to "transfer shock."

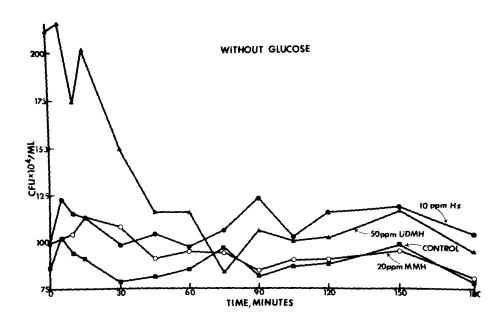


Figure 1. Viability of D-31 Inocula Exposed to Various Hydrazines

Longer incubation periods in a non-growth medium allow expression of concentration dependent cell death (Table 4). Higher concentrations of Hz and MMH extended the duration of the lag phase and caused cell death in glucose-free media. At 100 ppm both compounds prevented D-31 from initiating growth, indicating mechanisms other than transient interference with transport activities were operable at the higher concentration.

Substances that exert a bacteriostatic effect on particular species of bacteria do so by virtue of interfering with various synthetic mechanisms - DNA synthesis, RNA synthesis, cell wall synthesis, etc. Cells maintained in such inhibitory environments will ultimately become non-viable; however, removal to an inhibitor-free environment can result in the resumption of growth. In a complete medium containing a carbon and energy source (glucose), the toxicity of low concentrations of Hz and MMH to D-31 is expressed as a temporary inhibition. Cell death does not occur but rather a transient interference with cell replication processes is observed. These observations are consistent with previous findings that such processes could be associated with rate-controlling activities, i.e., transport mechanisms. The use of other probes that are known to affect cell membrane permeability may serve to elucidate this phenomenon further.

ACKNOWLEDGEMENTS

Reprints of this article are identified by the Air Force Aerospace Medical Research Laboratory as AFAMRL-TR-83-040. The reproduction of this report is authorized by the United States Government and is approved for public release.

REFERENCES

LONDON, S. A.: Appl. Environ. Microbiol. 33, 994 (1977).

LONDON, S. A.: AFAMRL-TR-79-98, Air Force Aerospace Medical

Research Laboratory, Wright-Patterson Air Force Base, Ohio
(AD A080646 (1979).

MANTEL, C., and S. LONDON: Bull. Environ. Contam. Toxicol. 25, 762 (1980).

LONDON, S. A., AND C. R. MANTEL: Bull. Environ. Contam. Toxicol. 30, 497 (1983).

Accepted May 18, 1983